Shader Code
Blit
Shader "Hidden/LightweightPipeline/Blit"
{
SubShader
{
Tags { "RenderType" = "Opaque" "RenderPipeline" = "LightweightPipeline"}
LOD 100
Pass
{
Tags { "LightMode" = "LightweightForward"}
ZTest Always ZWrite Off
HLSLPROGRAM
// Required to compile gles 2.0 with standard srp library
#pragma prefer_hlslcc gles
#pragma vertex Vertex
#pragma fragment Fragment
#include "LWRP/ShaderLibrary/Core.hlsl"
struct VertexInput
{
float4 vertex : POSITION;
float2 uv : TEXCOORD0;
};
struct VertexOutput
{
half4 pos : SV_POSITION;
half2 uv : TEXCOORD0;
};
TEXTURE2D(_BlitTex);
SAMPLER(sampler_BlitTex);
VertexOutput Vertex(VertexInput i)
{
VertexOutput o;
o.pos = TransformObjectToHClip(i.vertex.xyz);
o.uv = i.uv;
return o;
}
half4 Fragment(VertexOutput i) : SV_Target
{
half4 col = SAMPLE_TEXTURE2D(_BlitTex, sampler_BlitTex, i.uv);
return col;
}
ENDHLSL
}
}
}
LWStandard Default
Shader "LightweightPipeline/Standard (Physically Based)"
{
Properties
{
// Specular vs Metallic workflow
[HideInInspector] _WorkflowMode("WorkflowMode", Float) = 1.0
_Color("Color", Color) = (1,1,1,1)
_MainTex("Albedo", 2D) = "white" {}
_Cutoff("Alpha Cutoff", Range(0.0, 1.0)) = 0.5
_Glossiness("Smoothness", Range(0.0, 1.0)) = 0.5
_GlossMapScale("Smoothness Scale", Range(0.0, 1.0)) = 1.0
_SmoothnessTextureChannel("Smoothness texture channel", Float) = 0
[Gamma] _Metallic("Metallic", Range(0.0, 1.0)) = 0.0
_MetallicGlossMap("Metallic", 2D) = "white" {}
_SpecColor("Specular", Color) = (0.2, 0.2, 0.2)
_SpecGlossMap("Specular", 2D) = "white" {}
[ToggleOff] _SpecularHighlights("Specular Highlights", Float) = 1.0
[ToggleOff] _GlossyReflections("Glossy Reflections", Float) = 1.0
_BumpScale("Scale", Float) = 1.0
_BumpMap("Normal Map", 2D) = "bump" {}
_Parallax("Height Scale", Range(0.005, 0.08)) = 0.02
_ParallaxMap("Height Map", 2D) = "black" {}
_OcclusionStrength("Strength", Range(0.0, 1.0)) = 1.0
_OcclusionMap("Occlusion", 2D) = "white" {}
_EmissionColor("Color", Color) = (0,0,0)
_EmissionMap("Emission", 2D) = "white" {}
_DetailMask("Detail Mask", 2D) = "white" {}
_DetailAlbedoMap("Detail Albedo x2", 2D) = "grey" {}
_DetailNormalMapScale("Scale", Float) = 1.0
_DetailNormalMap("Normal Map", 2D) = "bump" {}
[Enum(UV0,0,UV1,1)] _UVSec("UV Set for secondary textures", Float) = 0
// Blending state
[HideInInspector] _Mode("__mode", Float) = 0.0
[HideInInspector] _SrcBlend("__src", Float) = 1.0
[HideInInspector] _DstBlend("__dst", Float) = 0.0
[HideInInspector] _ZWrite("__zw", Float) = 1.0
}
SubShader
{
// Lightweight Pipeline tag is required. If Lightweight pipeline is not set in the graphics settings
// this Subshader will fail. One can add a subshader below or fallback to Standard built-in to make this
// material work with both Lightweight Pipeline and Builtin Unity Pipeline
Tags{"RenderType" = "Opaque" "RenderPipeline" = "LightweightPipeline"}
LOD 300
// ------------------------------------------------------------------
// Forward pass. Shades all light in a single pass. GI + emission + Fog
Pass
{
// Lightmode matches the ShaderPassName set in LightweightPipeline.cs. SRPDefaultUnlit and passes with
// no LightMode tag are also rendered by Lightweight Pipeline
Tags{"LightMode" = "LightweightForward"}
Blend[_SrcBlend][_DstBlend]
ZWrite[_ZWrite]
HLSLPROGRAM
// Required to compile gles 2.0 with standard SRP library
// All shaders must be compiled with HLSLcc and currently only gles is not using HLSLcc by default
#pragma prefer_hlslcc gles
#pragma target 3.0
// -------------------------------------
// Material Keywords
#pragma shader_feature _NORMALMAP
#pragma shader_feature _ _ALPHATEST_ON _ALPHABLEND_ON _ALPHAPREMULTIPLY_ON
#pragma shader_feature _EMISSION
#pragma shader_feature _METALLICSPECGLOSSMAP
#pragma shader_feature _SMOOTHNESS_TEXTURE_ALBEDO_CHANNEL_A
#pragma shader_feature _OCCLUSIONMAP
#pragma shader_feature _SPECULARHIGHLIGHTS_OFF
#pragma shader_feature _GLOSSYREFLECTIONS_OFF
#pragma shader_feature _SPECULAR_SETUP
// -------------------------------------
// Lightweight Pipeline keywords
// We have no good approach exposed to skip shader variants, e.g, ideally we would like to skip _CASCADE for all puctual lights
// Lightweight combines light classification and shadows keywords to reduce shader variants.
// Lightweight shader library declares defines based on these keywords to avoid having to check them in the shaders
// Core.hlsl defines _MAIN_LIGHT_DIRECTIONAL and _MAIN_LIGHT_SPOT (point lights can't be main light)
// Shadow.hlsl defines _SHADOWS_ENABLED, _SHADOWS_SOFT, _SHADOWS_CASCADE, _SHADOWS_PERSPECTIVE
#pragma multi_compile _ _MAIN_LIGHT_DIRECTIONAL_SHADOW _MAIN_LIGHT_DIRECTIONAL_SHADOW_CASCADE _MAIN_LIGHT_DIRECTIONAL_SHADOW_SOFT _MAIN_LIGHT_DIRECTIONAL_SHADOW_CASCADE_SOFT _MAIN_LIGHT_SPOT_SHADOW _MAIN_LIGHT_SPOT_SHADOW_SOFT
#pragma multi_compile _ _MAIN_LIGHT_COOKIE
#pragma multi_compile _ _ADDITIONAL_LIGHTS
#pragma multi_compile _ _VERTEX_LIGHTS
#pragma multi_compile _ _MIXED_LIGHTING_SUBTRACTIVE
#pragma multi_compile _ FOG_LINEAR FOG_EXP2
// -------------------------------------
// Unity defined keywords
#pragma multi_compile _ DIRLIGHTMAP_COMBINED LIGHTMAP_ON
//--------------------------------------
// GPU Instancing
#pragma multi_compile_instancing
// LW doesn't support dynamic GI. So we save 30% shader variants if we assume
// LIGHTMAP_ON when DIRLIGHTMAP_COMBINED is set
#ifdef DIRLIGHTMAP_COMBINED
#define LIGHTMAP_ON
#endif
#pragma vertex LitPassVertex
#pragma fragment LitPassFragment
#include "LWRP/ShaderLibrary/LightweightPassLit.hlsl"
ENDHLSL
}
Pass
{
Tags{"LightMode" = "ShadowCaster"}
ZWrite On ZTest LEqual
HLSLPROGRAM
// Required to compile gles 2.0 with standard srp library
#pragma prefer_hlslcc gles
#pragma target 2.0
//--------------------------------------
// GPU Instancing
#pragma multi_compile_instancing
#pragma vertex ShadowPassVertex
#pragma fragment ShadowPassFragment
#include "LWRP/ShaderLibrary/LightweightPassShadow.hlsl"
ENDHLSL
}
Pass
{
Tags{"LightMode" = "DepthOnly"}
ZWrite On
ColorMask 0
HLSLPROGRAM
// Required to compile gles 2.0 with standard srp library
#pragma prefer_hlslcc gles
#pragma target 2.0
#pragma vertex vert
#pragma fragment frag
#include "LWRP/ShaderLibrary/Core.hlsl"
float4 vert(float4 pos : POSITION) : SV_POSITION
{
return TransformObjectToHClip(pos.xyz);
}
half4 frag() : SV_TARGET
{
return 0;
}
ENDHLSL
}
// This pass it not used during regular rendering, only for lightmap baking.
Pass
{
Tags{"LightMode" = "Meta"}
Cull Off
HLSLPROGRAM
// Required to compile gles 2.0 with standard srp library
#pragma prefer_hlslcc gles
#pragma vertex LightweightVertexMeta
#pragma fragment LightweightFragmentMeta
#pragma shader_feature _SPECULAR_SETUP
#pragma shader_feature _EMISSION
#pragma shader_feature _METALLICSPECGLOSSMAP
#pragma shader_feature _ _SMOOTHNESS_TEXTURE_ALBEDO_CHANNEL_A
#pragma shader_feature EDITOR_VISUALIZATION
#pragma shader_feature _SPECGLOSSMAP
#include "LWRP/ShaderLibrary/LightweightPassMeta.hlsl"
ENDHLSL
}
}
FallBack "Hidden/InternalErrorShader"
CustomEditor "LightweightStandardGUI"
}
LightweightPipeline\LWRP\ShaderLibraryCore.hlsl
#ifndef LIGHTWEIGHT_PIPELINE_CORE_INCLUDED
#define LIGHTWEIGHT_PIPELINE_CORE_INCLUDED
#include "CoreRP/ShaderLibrary/Common.hlsl"
#include "CoreRP/ShaderLibrary/Packing.hlsl"
#include "Input.hlsl"
///////////////////////////////////////////////////////////////////////////////
// Light Classification defines //
// //
// In order to reduce shader variations main light keywords were combined //
// here we define main light type keywords. //
// Main light is either a shadow casting light or the brighest directional. //
// Lightweight pipeline doesn't support point light shadows so they can't be //
// classified as main light. //
///////////////////////////////////////////////////////////////////////////////
#if defined(_MAIN_LIGHT_DIRECTIONAL_SHADOW) || defined(_MAIN_LIGHT_DIRECTIONAL_SHADOW_CASCADE) || defined(_MAIN_LIGHT_DIRECTIONAL_SHADOW_SOFT) || defined(_MAIN_LIGHT_DIRECTIONAL_SHADOW_CASCADE_SOFT)
#define _MAIN_LIGHT_DIRECTIONAL
#endif
#if defined(_MAIN_LIGHT_SPOT_SHADOW) || defined(_MAIN_LIGHT_SPOT_SHADOW_SOFT)
#define _MAIN_LIGHT_SPOT
#endif
// In case no shadow casting light we classify main light as directional
#if !defined(_MAIN_LIGHT_DIRECTIONAL) && !defined(_MAIN_LIGHT_SPOT)
#define _MAIN_LIGHT_DIRECTIONAL
#endif
#ifdef _NORMALMAP
#define OUTPUT_NORMAL(IN, OUT) OutputTangentToWorld(IN.tangent, IN.normal, OUT.tangent, OUT.binormal, OUT.normal)
#else
#define OUTPUT_NORMAL(IN, OUT) OUT.normal = TransformObjectToWorldNormal(IN.normal)
#endif
#if defined(UNITY_REVERSED_Z)
#if UNITY_REVERSED_Z == 1
//D3d with reversed Z => z clip range is [near, 0] -> remapping to [0, far]
//max is required to protect ourselves from near plane not being correct/meaningfull in case of oblique matrices.
#define UNITY_Z_0_FAR_FROM_CLIPSPACE(coord) max(((1.0-(coord)/_ProjectionParams.y)*_ProjectionParams.z),0)
#else
//GL with reversed z => z clip range is [near, -far] -> should remap in theory but dont do it in practice to save some perf (range is close enough)
#define UNITY_Z_0_FAR_FROM_CLIPSPACE(coord) max(-(coord), 0)
#endif
#elif UNITY_UV_STARTS_AT_TOP
//D3d without reversed z => z clip range is [0, far] -> nothing to do
#define UNITY_Z_0_FAR_FROM_CLIPSPACE(coord) (coord)
#else
//Opengl => z clip range is [-near, far] -> should remap in theory but dont do it in practice to save some perf (range is close enough)
#define UNITY_Z_0_FAR_FROM_CLIPSPACE(coord) (coord)
#endif
void AlphaDiscard(half alpha, half cutoff)
{
#ifdef _ALPHATEST_ON
clip(alpha - cutoff);
#endif
}
half3 UnpackNormal(half4 packedNormal)
{
// Compiler will optimize the scale away
#if defined(UNITY_NO_DXT5nm)
return UnpackNormalRGB(packedNormal, 1.0);
#else
return UnpackNormalmapRGorAG(packedNormal, 1.0);
#endif
}
half3 UnpackNormalScale(half4 packedNormal, half bumpScale)
{
#if defined(UNITY_NO_DXT5nm)
return UnpackNormalRGB(packedNormal, bumpScale);
#else
return UnpackNormalmapRGorAG(packedNormal, bumpScale);
#endif
}
void OutputTangentToWorld(half4 vertexTangent, half3 vertexNormal, out half3 tangentWS, out half3 binormalWS, out half3 normalWS)
{
half sign = vertexTangent.w * GetOddNegativeScale();
normalWS = TransformObjectToWorldNormal(vertexNormal);
tangentWS = normalize(mul((half3x3)UNITY_MATRIX_M, vertexTangent.xyz));
binormalWS = cross(normalWS, tangentWS) * sign;
}
half3 TangentToWorldNormal(half3 normalTangent, half3 tangent, half3 binormal, half3 normal)
{
half3x3 tangentToWorld = half3x3(tangent, binormal, normal);
return normalize(mul(normalTangent, tangentToWorld));
}
half ComputeFogFactor(float z)
{
float clipZ_01 = UNITY_Z_0_FAR_FROM_CLIPSPACE(z);
#if defined(FOG_LINEAR)
// factor = (end-z)/(end-start) = z * (-1/(end-start)) + (end/(end-start))
float fogFactor = saturate(clipZ_01 * unity_FogParams.z + unity_FogParams.w);
return half(fogFactor);
#elif defined(FOG_EXP2)
// factor = exp(-(density*z)^2)
// -density * z computed at vertex
return half(unity_FogParams.x * clipZ_01);
#else
return 0.0h;
#endif
}
void ApplyFogColor(inout half3 color, half3 fogColor, half fogFactor)
{
#if defined (FOG_LINEAR) || defined(FOG_EXP2)
#if defined(FOG_EXP2)
// factor = exp(-(density*z)^2)
// fogFactor = density*z compute at vertex
fogFactor = saturate(exp2(-fogFactor*fogFactor));
#endif
color = lerp(fogColor, color, fogFactor);
#endif
}
void ApplyFog(inout half3 color, half fogFactor)
{
ApplyFogColor(color, unity_FogColor.rgb, fogFactor);
}
#endif
LightweightPipeline\LWRP\LightweightPassLit.hlsl
#ifndef LIGHTWEIGHT_PASS_LIT_INCLUDED
#define LIGHTWEIGHT_PASS_LIT_INCLUDED
#include "LWRP/ShaderLibrary/InputSurface.hlsl"
#include "LWRP/ShaderLibrary/Lighting.hlsl"
struct LightweightVertexInput
{
float4 vertex : POSITION;
float3 normal : NORMAL;
float4 tangent : TANGENT;
float2 texcoord : TEXCOORD0;
float2 lightmapUV : TEXCOORD1;
UNITY_VERTEX_INPUT_INSTANCE_ID
};
struct LightweightVertexOutput
{
float2 uv : TEXCOORD0;
float4 lightmapUVOrVertexSH : TEXCOORD1; // holds either lightmapUV or vertex SH. depending on
LIGHTMAP_ON
float3 posWS : TEXCOORD2;
half3 normal : TEXCOORD3;
#ifdef _NORMALMAP
half3 tangent : TEXCOORD4;
half3 binormal : TEXCOORD5;
#endif
half3 viewDir : TEXCOORD6;
half4 fogFactorAndVertexLight : TEXCOORD7; // x: fogFactor, yzw: vertex light
#ifdef _SHADOWS_ENABLED
float4 shadowCoord : TEXCOORD8;
#endif
float4 clipPos : SV_POSITION;
UNITY_VERTEX_INPUT_INSTANCE_ID
};
void InitializeInputData(LightweightVertexOutput IN, half3 normalTS, out InputData inputData)
{
inputData.positionWS = IN.posWS.xyz;
#ifdef _NORMALMAP
inputData.normalWS = TangentToWorldNormal(normalTS, IN.tangent, IN.binormal, IN.normal);
#else
inputData.normalWS = normalize(IN.normal);
#endif
#ifdef SHADER_API_MOBILE
// viewDirection should be normalized here, but we avoid doing it as it's close enough and we save some ALU.
inputData.viewDirectionWS = IN.viewDir;
#else
inputData.viewDirectionWS = normalize(IN.viewDir);
#endif
#ifdef _SHADOWS_ENABLED
inputData.shadowCoord = IN.shadowCoord;
#else
inputData.shadowCoord = float4(0, 0, 0, 0);
#endif
inputData.fogCoord = IN.fogFactorAndVertexLight.x;
inputData.vertexLighting = IN.fogFactorAndVertexLight.yzw;
inputData.bakedGI = SampleGI(IN.lightmapUVOrVertexSH, inputData.normalWS);
}
///////////////////////////////////////////////////////////////////////////////
// Vertex and Fragment functions //
///////////////////////////////////////////////////////////////////////////////
// Vertex: Used for Standard and StandardSimpleLighting shaders
LightweightVertexOutput LitPassVertex(LightweightVertexInput v)
{
LightweightVertexOutput o = (LightweightVertexOutput)0;
UNITY_SETUP_INSTANCE_ID(v);
UNITY_TRANSFER_INSTANCE_ID(v, o);
o.uv = TRANSFORM_TEX(v.texcoord, _MainTex);
o.posWS = TransformObjectToWorld(v.vertex.xyz);
o.clipPos = TransformWorldToHClip(o.posWS);
o.viewDir = SafeNormalize(GetCameraPositionWS() - o.posWS);
// initializes o.normal and if _NORMALMAP also o.tangent and o.binormal
OUTPUT_NORMAL(v, o);
// We either sample GI from lightmap or SH. lightmap UV and vertex SH coefficients
// are packed in lightmapUVOrVertexSH to save interpolator.
// The following funcions initialize
OUTPUT_LIGHTMAP_UV(v.lightmapUV, unity_LightmapST, o.lightmapUVOrVertexSH);
OUTPUT_SH(o.normal, o.lightmapUVOrVertexSH);
half3 vertexLight = VertexLighting(o.posWS, o.normal);
half fogFactor = ComputeFogFactor(o.clipPos.z);
o.fogFactorAndVertexLight = half4(fogFactor, vertexLight);
#if defined(_SHADOWS_ENABLED) && !defined(_SHADOWS_CASCADE)
o.shadowCoord = ComputeShadowCoord(o.posWS.xyz);
#endif
return o;
}
// Used for Standard shader
half4 LitPassFragment(LightweightVertexOutput IN) : SV_Target
{
UNITY_SETUP_INSTANCE_ID(IN);
SurfaceData surfaceData;
InitializeStandardLitSurfaceData(IN.uv, surfaceData);
InputData inputData;
InitializeInputData(IN, surfaceData.normalTS, inputData);
half4 color = LightweightFragmentPBR(inputData, surfaceData.albedo, surfaceData.metallic, surfaceData.specular, surfaceData.smoothness, surfaceData.occlusion, surfaceData.emission, surfaceData.alpha);
ApplyFog(color.rgb, inputData.fogCoord);
return color;
}
// Used for StandardSimpleLighting shader
half4 LitPassFragmentSimple(LightweightVertexOutput IN) : SV_Target
{
UNITY_SETUP_INSTANCE_ID(IN);
float2 uv = IN.uv;
half4 diffuseAlpha = SAMPLE_TEXTURE2D(_MainTex, sampler_MainTex, uv);
half3 diffuse = diffuseAlpha.rgb * _Color.rgb;
#ifdef _GLOSSINESS_FROM_BASE_ALPHA
half alpha = _Color.a;
#else
half alpha = diffuseAlpha.a * _Color.a;
#endif
AlphaDiscard(alpha, _Cutoff);
#ifdef _NORMALMAP
half3 normalTS = Normal(uv);
#else
half3 normalTS = half3(0, 0, 1);
#endif
half3 emission = Emission(uv);
half4 specularGloss = SpecularGloss(uv, diffuseAlpha.a);
half shininess = _Shininess * 128.0h;
InputData inputData;
InitializeInputData(IN, normalTS, inputData);
return LightweightFragmentBlinnPhong(inputData, diffuse, specularGloss, shininess, emission, alpha);
};
#endif
LightweightPipeline\LWRP\LightweightPassShadow.hlsl
#ifndef LIGHTWEIGHT_PASS_SHADOW_INCLUDED
#define LIGHTWEIGHT_PASS_SHADOW_INCLUDED
#include "LWRP/ShaderLibrary/Core.hlsl"
// x: global clip space bias, y: normal world space bias
float4 _ShadowBias;
float3 _LightDirection;
struct VertexInput
{
float4 position : POSITION;
float3 normal : NORMAL;
UNITY_VERTEX_INPUT_INSTANCE_ID
};
float4 ShadowPassVertex(VertexInput v) : SV_POSITION
{
UNITY_SETUP_INSTANCE_ID(v);
float3 positionWS = TransformObjectToWorld(v.position.xyz);
float3 normalWS = TransformObjectToWorldDir(v.normal);
float invNdotL = 1.0 - saturate(dot(_LightDirection, normalWS));
float scale = invNdotL * _ShadowBias.y;
// normal bias is negative since we want to apply an inset normal offset
positionWS = normalWS * scale.xxx + positionWS;
float4 clipPos = TransformWorldToHClip(positionWS);
// _ShadowBias.x sign depens on if platform has reversed z buffer
clipPos.z += _ShadowBias.x;
#if defined(UNITY_REVERSED_Z)
clipPos.z = min(clipPos.z, 1.0);
#else
clipPos.z = max(clipPos.z, 0.0);
#endif
return clipPos;
}
half4 ShadowPassFragment() : SV_TARGET
{
return 0;
}
#endif
'Technical Report > R&D test' 카테고리의 다른 글
Traditional subscattering (0) | 2018.03.21 |
---|---|
Unity Sprites/Cheap Outer Glow Shader (0) | 2018.02.05 |
Unity fragment shader 구조 분석 정리 (0) | 2017.09.26 |
GLSL Rotate image shader (0) | 2017.07.21 |
Unity Bilboard shader (0) | 2017.07.13 |